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S U M M A T I O N  OF T H E  W I T T I N G  S E R I E S  I N  T H E  S O L I T A R Y - W A V E  P R O B L E M  

E. A .  K a r a b u t  UDC 532.59 

Some exact solutions of the Euler equations with a free surface in the presence of gravitation 
forces are found. They are obtained by summing Witting series applied in the theory of solitary 
waves. It is shown that in some cases, the left-hand half of the constructed flows is close to the 
left-hand half of the solitary waves. 

I n t r o d u c t i o n .  To describe the solitary wave in a fluid of finite depth, Witt ing [1] proposed a certain 
power series (the Witting series) and performed its numerical summation. The author showed in [2-4] that 
the problem of exact summation of this series is reduced to the integration of a special system of ordinary 
differential equations. The author also generalized the Witting series to the case of periodic waves on water 
[5-7]. The summation of these generalizations is reduced to the solution of a similar system of equations. The 
simplest case, where this system consists of three equations, was earlier considered. In the present work, the 
case where the number of equations is more than three is investigated numerically and analytically. 

In the present work, th e problem of plane steady-state flows of an ideal incompressible fluid with the 
free surface in the gravity field is considered. The flows are potential and occur above the even horizontal 
bottom, and the surface tension is absent. It is assumed that  at the left-hand infinity the fluid moves from left 
to right with horizontal velocity u0 in a layer of depth h0. The solitary-wave problem and the flows produced 
by the Witting series [1] (called Witting flows hereafter) are attributed to this class of problems. 

The solitary-wave problem is to determine the free surface in the form of a local rise symmetrically 
located relative to the vertical axis. This problem depends on one parameter, and either the Froude number 
(Fr = u o / v / ~  > 1, where g is the acceleration of gravity) or the Stokes parameter 0 (0 ~< 0 < 7r/2) 
determined from the equation tan 0/0 = Fr 2 can be used as this parameter. For small amplitudes (or small 
0), the solitary-wave problem is investigated analytically. The Witting series is proposed to study the case of 
amplitudes that  are not small. This is the asymptotic expansion in the vicinity of the left-hand infinity. This 
series was investigated numerically for two cases in [1]: 0 = ~r/3 and 7r/4. It was shown that based on this 
series, one can approximately describe solitary waves up to the maximum amplitude. Examples of other types 
of series for solitary waves can be found in [8, 9]. 

It was shown in [2-4] that,  for 0 = r where rn and n are integers, the problem of exact summation 
of the Witting series is equivalent to the solution of a special system of n ordinary differential equations. 
The Witting series was found to correspond to some other free-boundary flows, rather than solitary waves. 
For 0 = r /3 ,  when the system contains three equations (the minimum number), it is easily integrated. The 
free-surface shape and the streamlines were previously constructed only for this simplest case. 

In the present paper, the Witting flows are studied for other values of 0. First, these flows are interesting 
owing to the fact that they are the exact solutions of hydrodynamics equations on the free surface of which 
the condition of pressure constancy is satisfied. Secondly, by construction, the left-hand half of the Witting 
flows should be close to the left-hand half of the solitary waves. It is impossible to guarantee the absence of 
singular points in the flow and the univalence of the flow; one can guarantee this only on the left-hand side of 
the flow. Therefore, if one "cuts off" the Witting flow, one can judge, in a study of its left-hand half, only the 
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behavior of a solitary wave as the parameter 0 is varied. For example, for 0 = a'/3 the Witting flow considered 
has a point of break at an angle of 120 ~ on the free surface. To the left of this point, the flow is close, with 
high accuracy, to the solitary wave of maximum amplitude. It is natural to assume that,  for 0 < lr/3, we also 
obtain flows the left-hand half of which is close to the left-hand half of the solitary wave whose amplitude 
is smaller than the maximum amplitude. This assumption is verified in this study and, apparently, it is true 
only for 0 ~ 7r/3. 

If the Bernoulli integral is used as the boundary condition on a free surface, the initial boundary- 
value problem is cubically nonlinear. Accordingly, a system of ordinary differential equations which describes 
Witting flows will be cubically nonlinear. It is, however, known that  the wave problem on water is quadratically 
nonlinear [10]. Below, using Babenko's quadratically nonlinear operator equation, we obtain a quadratically 
nonlinear system of equations which describes Witting flows and find one integral of this system. Owing to 
this integral, the system is integrated for 0 = a'/4. When the number of equations in the system is more than 
four, its solution is found numerically. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We locate the origin of the Cartesian coordinate system at the 
bottom. The X axis is along the bottom, and the Y axis is directed vertically upward. It is necessary to find 
Y = Yo(X), i.e., the free-surface equation which satisfies the condition limlxl_.oo Yo(X) = ho. 

Let @ and �9 be the velocity potential and the streamline function, respectively. In the plane of the 
dimensionless complex potential X = ~ + ir = O(@ + iq!)/houo, the band 

--oo < cp < oo ( 0 < r  (1.1) 

corresponds to the fluid. The solitary-wave problem will be solved if we find the conformal mapping of this 
band onto the flow area. We represent this map in the form Z = X+iY  = (ho/O)f(x), where f(x) = x + W ( x ) .  
The desired function W(X) = A(~, r  + i B(qo, r  is defined from the solution of the boundary-value problem 

l d(W + x ) r  1 
~x ~ l - 2 v l m W '  v = c o t 0  ( r  qo<qo0), 

Im W = 0 (r  = 0, qo < qo0), (1.2) 

lim Im W = 0. 
(p-'-*--oO 

Here the first equation is the condition of pressure constancy on the free surface (the Bernoulli integral), and 
the second is the even-bottom condition. The solution of this boundary-value problem is not unique, because 
the behavior of the solution for qo > ~o0 is not known. The solitary wave is one of the possible solutions; it is 
obtained if the condition 

qo0 = +oo, lim Im W = 0 (1.3) 
~--,(X) 

is additionally satisfied. 
The search for the solution of (1.2) in the form of a series 

oo 

W = ~ 02YW(J)(X) (1.4) 
j=1 

leads to the shallow-water expansion. This expansion appeared for the first time in another formulation in 
[11]. All W(x j) are the polynomials of cosh-2(X/2). If we introduce the variable ( = e x, we shall find that the 
functions W(J) are the analytical functions of ( in the vicinity of the point ( = 0. Therefore, it is natural to 
reexpand (1.4) and try to search for the solution of the boundary-value problem (1.2) in the form of a power 
series 

W ~- ~ Ej(O)( j, lmEj = 0. (1.5) 
j = l  

This is the Witting series. If one substitutes this series into the boundary condition (1.2) and equates the 
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terms at the same degrees e ~, one obtains the  following recurrent formulas to find the coefficients Ej: 

E2 = E 2 ( - 3 v 2 / 4  A- 1/4), 

E3 = E13(9v4/16-  7t~2/8 + 1/16), 

. . . .  �9 . . o  . . . . . . .  . .  . . . . .  . . . . . . . . . .  

The  first coefficient remains undetermined.  However, its variation leads only to a shift of the solution along the 
band; therefore, E1 can be any positive number.  The  advantage of the Wit t ing series (1.5) over the series (1.4) 
lies in the fact tha t  Ej(O) are found in an easier way compared with W(D(X ). Witt ing  [1] found numerically 
more than 200 terms of the series (1.5). 

It is not known whether  both series describe the same flow; however, it is clear that  these series do 
not describe a solitary wave. The  reason is tha t  the exact solution of problem (1.2), (1.3), i.e., the function 
W(~), is not analytic for ~ = 0. The  paradox is that  the series (1.4) and (1.5) were applied to calculate the 
parameters of solitary waves. This especially concerns the series (1.4), which was used in many  studies. The 
record here belongs to [12], where the expansion is found up to 054. In this case, the point is approximate 
calculations, though with high accuracy. 

As follows from [2-4], for 8 = rm/n the functions 

P j ( x )  = (o, = e i~ j = 1 , . . . , n )  (1.6) 

satisfy the system of ordinary differential equations 

- ' - ~ X  "I''1 \"~-X + 1  --f-TJ' "" 

Here f j  = 1 + iv(Pj+l  - Pj) .  Hence, to solve the boundary-value problem (1.2) in the form of the Witt ing 
series (1.5), it is sufficient to integrate system (1.7) and set W = P1. 

2. B a b e n k o ' s  E q u a t i o n .  Let an arbitrary analytic function Q(x) which satisfies the boundary 
conditions 

I m Q = q ( q o )  ( r  I m Q = 0  ( r  

be defined in the band (1.1). The  operators of restoration of the real part and the normal derivative of the 
imaginary part on the upper  bound of the band are denoted by H and N, respectively, i.e., 

I o I Hq(x)  = ReQ r N q(x) = ~-~ Im Q r 

The Cauchy-Riemann relation 

Hq~, = Nq (2.1) 

holds true. With  the use of the function G = 1/(df/d X) - 1 analytic in the band (1.1), the condition of pressure 
constancy 1/[df/dx[ 2 = 1 - 2t, ImW (r  = 0) can be wri t ten in the form G = (df/dx)(1 - 2t, ImW) - 1. 
Taking into account that  df/d X = 1 + N B  + ibm,, we obtain G = N B  - 2t, B(1 + N B )  - i(B - t~B2)~,. The 
real and imaginary parts of the function G are connected by the operator H. Hence, we have H ( B  - t~B2)~ + 
NB - 2t, B(1 + NB) = 0. Using the Cauchy-Riemann relations (2.1), we obtain Babenko's equation [10] 

B + (B - 1 / v ) N B  + N B 2 / 2  = 0. (2.2) 

We reduce this operator equation to a system of ordinary differential equations. To do this, there are two 
methods.  The first and simpler method is based on the analytic continuation of the desired functions beyond 
the band [4]. The  second and more cumbersome method  is based on direct summat ion  of the series with the 
use of generating functions [3]. Only the second method  is apparently suitable for Babenko's equation. 



Let 0 = ~rm/n. We assume that  the ~o-dependent function which is represented in the form of a power 
series with respect to e ~' belongs to the /th family (1 ~< l <~ 2n) if the power series contains only terms of 
the form e (l+k'2n)ca, where k is an arbitrary nonnegative integer. To sum the series (1.5), it is necessary to 
introduce 2n generating functions 

= 

o O  

E E2nj-(2n-I) eg(2"j-2n+l), 
/'=1 

each of which is a function of the lth family. 
The parameter B ( ~ , r  on the upper 

functions of 2n families: 
2n 

bound of the band r = 0 can be represented as a sum of the 

B = y~ sin(lO)B,(~o). (2.3) 
I=1 

We shall obtain a similar representation for N B  and N B  2. If 

s t = at el~ + al+2ne (i+2n)~ + . . .  

is an arbitrary function of the lth family, we have 

cos(t0) cos(10) , 
Hsi = sin(M) st, N a t -  sin(M) st, (2.4) 

where the prime denotes the derivative with respect to ~. This follows from the consideration of the real and 
imaginary parts of the auxiliary analytic function St = ale ix + at+2ne(l+2n)x + . . .  at the upper bound of the 
band X = ~o + iO. Taking into account Re St = cos(10)st and Im St = sin(lO)st, we obtain the desired formulas 
(2.4). Applying them in (2.3), we find 

2n 
N B  = ~ cos(lO)B~(~o). (2.5) 

1=1 

Taking the square of (2.3), with the use of the formula of summation over the diagonal of all the 
elements of the square matrix" 

) E E a,j = E oJ,,-i + E 
i=1 j=l 1=1 "= I 1 j=l 

and taking into consideration that the products BjBt_j  and B.iBI_j+2n are functions of t h e / t h  family, i.e., 
formulas (2.4) are suitable for them, we have 

5. cos(/0) [ ~ J  2. ] 
NB2 = Y~ sin(/0) sin(j0) s i n ( / -  j)O. (BjBt_j) '  + ~ sin(j0) s i n ( / -  j)O. (BjBI-j+2.) '  �9 (2.6) 

1=1 ./=1 j=l 

Substituting the resulting expressions (2.3), (2.5), and (2.6) into Babenko's equation (2.2) and taking 
into account that, if the sum of 2n functions of various families is zero, we obtain 

l--1 2n 

sin(/O) ~ ~ ~ s in ( jO)cos( / -  j)O . BjBI_ j + ~_. s in( jO)cos( / -  j)O . BjBt+2,_j  } 
j=l  j=l 

I-1 2n 
+ COS(M){ ~ sin(j0) s i n ( / -  j)O. BjBI_ j + ~_~ sin(j0) s i n ( / -  j)O. BjBt+2,_j  } 

j=l j=l 

+ sin2(lO)Bt - ( l /v )  cos(10) sin(lO)B~ = 0. (2.7) 

Thus, we have found the required quadratically nonlinear system of ordinary differential equations. 
To simplify it, we apply a discrete Fourier transform. By definition, if at, arbitrary vector from 2n complex 
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numbers  Dz is given, a t ransform implemented by the formula 

2n 
L)i = E DIW(I-1)(j-1), 

l=l 

where ~-, = e i0 = e i~rm/n, is called a discrete Fourier transform. If 

i 2n 
Ci = E DjHI-j+I + ~ DjHI+2,-j+I, 

1=I i=t+1 

then d'p = Dp[-Ip. Owing to this property, Eqs. (2.7) are simplified. After the Fourier transform, the sums in 
(2.7) disappear. 

We introduce new vectors. The  left-hand column gives their notation,  and the  r ight-hand column the 
corresponding Fourier transforms: 

Ft = w2tBl, .f"p = w2[?p+2, 
o ,  = ,041B , 0 ,  = 

l--1 2n 

1=1 1=! 
I-I  2n (2.8) 

DI = y~FyB~_i + ~'~FyB~+2,,_ i,  Dp =wP- '  fi'pB'p, 
1=1 1=1 
l--1 2n 

St = E FiGt_j + E FiGI_i+2n, Sp = wP-'/SnG p. 
1=1.  j=l 

Via the new vectors, expression (2.7) can be rewrit ten in the form 

- w 41 - 1)Bt + i (w4 /  - 1)B~ - (w 41 + 1)CI + DI + S! = 0. 21 

Performing the Fourier t ransform of the last equation,  denoting PI =/~21-lw 21-2, and using the right-hand 
column of (2.8), after some simplifications we find 

(PI + 1)fl -- (P/+2 + 1)fl+l (1 ~< l ~< n). (2.9) 

Thus, we obtain system (2.9) from Babenko's equation, and each equation in it is a consequence of 
two adjacent equations (1.7). If system (1.7) can be writ ten in the s tandard form resolved relative to the 
derivatives, this resolution is impossible for (2.9), because the product  of all the equations in (2.9) gives an 
identity. Therefore, an integral should exist. This integral is easily found if one sums all the equations in (2.9). 

n 

With allowance for ~--~fJ = const,  we obtain 
j----I 

" - ~ f j =  ~ dx  fj  or f ; = O .  
1=1 i=1 ~X = 

Rewriting the last equality, we conclude that  system (2.9) should be supplemented by the quadratically 
nonlinear integral 

(P1 - P2) 2 + (P2 - P3) 2 + . . .  + (Pn--1 -- Pn) 2 + (P,~ - PI) 2 = const .  (2.10) 

For gravitational waves on the surface of a fluid, the Stokes series are found by recurrent formulas 
with double sums. Longuet-Higgins [13] found a nonlinear transformation which permits  one to simplify these 
formulas such that  they contain only unitary sums. These transformations of different series used in wave 
problems have been performed so far. Apparently, the fact of the square nonlinearity of the initial formulation 
of the problem is very little known For (1.5), Wit t ing [1] also used recurrent formulas with double sums. The 
formulas with unitary sums can be derived if one uses one equation of system (1.7) which can be written with 
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allowance for (1.6) in the form 

(dW(~_--2iO) 1)[1 iv(W(x ) (dW(•+2iO) 1)[1 i v (W(x+2iO)W(X))] .  dx + + - W ( X -  2i0))] = \ ~ + + - 

The initial boundary-value problem (1.2) is equivalent to this quadratically nonlinear, differential-difference 
equation. Substituting the Witting series (1.5) into it and equating the terms with equal degrees ~, we obtain 
the recurrent formula 

v j-1 
Ei = 2 sin(j0) (j cos(j0) - v sin(j0)) y~ kEkEj_k(cos(2k0) - cos(2jO)). 

k=l 

3. S y s t e m  of  F o u r  E q u a t i o n s .  We shall consider the case 0 = ~r/4, which follows the case 0 = ~r/3 in 
complexity. It was partially studied in [3]. Below, we shall construct the streamlines and find explicit formulas 
for the free-surface shape. 

We have the system of four equations 

(P~ + 1)(P I + 1 ) =  l / f , ,  (P~ + 1)(P~ + 1 ) =  l/f2, (3.1) 

+ 1)(P] + 1 ) =  11.f3, (PI + 1)(p:, + 1 ) =  11f4, 

where f l  -- 1 + i(P2 - PI),  f2 = 1 + i(P3 - P2), f3 -- 1 + i(P4 - P3), and f4 -- 1 + i(P1 - P4). We introduce 
the following new unknowns: 

Q1 -- EI~ + E3r 3 + Esr 5 + E7r 7 + . . . ,  R1 -- E2~ 2 + E4~ 4 q- E6r "~ + Esr s + . . . ,  (3.2) 
Q2 -- E I r  E3r 3 + E5r 5 - E7r 7 + . . . ,  R2 -- - E 2 r  2 + E4r 4 - E6r 6 + E8r 8 - . . .  �9 

As follows from (1.6), they are related to the old unknowns by the relations P1 = Q1 + R1, P2 = iQ2 + R2, 
P3 = -Q1  + RI,  and P4 = - iQ2  + R2. System (3.1) is solved using the integral (2.10), which has the form 

Q~ - Q12 = (R2 - R,)  2, (3.3) 

and also the second explicit integral flf3 = f2f4, which can written in the form 

R2 - R1 -- Q2QI. (3.4) 

As a result, the order of system (3.1) can be halved. We obtain 

dQ._._l.1 = QI(1 - Q~) d(R1 + •) ~ (1 - Q21)3 (3.5) 

dx ~/(1 + Q~)(1 - 2Q~)' dx = _ (1 + Q~)(1 - 2Q~)" 

It is necessary to find a solution of this system which satisfies, as follows from (3.2), the conditions 

lim Qle -x = El, lim Rle -2x = E~(-3v2/4 + 1/4). 

The first equation of the system is solved irrespective of the second equation. After the function QI(x) is 
found, the second equation is integrated, and the Witting solution for 0 = r/4 is given by the formula 

W = Q1 + R1. (3.6) 

At the bottom, i.e., when X = % for relatively large negative ~ the function Q1 is real. When Q1 is 
increased from 0 to 1/vf2, the parameter ~ increases from - o o  to a certain ~*. As ~o further increases, as 
follows from the first equation of (3.5), the function Q1 cannot remain real and, hence, the point )C = ~* is 
singular. Denoting u = Q]2 and integrating the first equation of (3.5), we obtain 

1 ] u(ldU- u ) *  21/2 + u)(1 - 2u) = x 

This formula is the Christoffel-Schwarz integral, which performs the conformal mapping of the upper half- 
plane u onto the polygon ADFCB in the plane of the complex potential X shown in Fig. 1. 
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It is easy to justify that  upon this conformal mapping, the upper bound of the band (1.1) corresponds 
to the circle [u - 11 = 1 or 

u = 2 cos ae  i~ ( - r / 2  <~ a ~< r / 2 )  (3.7) 

(shown by the dashed curve) in the plane of the complex potential. Hence, the identity I1 - Q~I = 1 (r  = r /4 )  
holds true on the free surface. Taking into account the consequence of (3.3) and (3.4) 

(1 - Q~)(1 -I- OS) = 1, (3.8) 

we find another identity: 

11 + Q~I = I ( r  = ~r/4). (3.9) 

To prove two more identities 

Q1 = - iQ2,  n l  = R2 (r  = Ir/4), (3.10) 

it suffices to substi tute ~ = re  i'r ( r />  0) into the series (3.2). From the first equality in (3.10), we obtain 
the consequence 

11 + Q~I = I 1 - Q~I ( r  -- ~r/4). (3.11) 

We use these identities to check the condition of pressure constancy on the free surface. It is necessary 
to prove that the equality 

-dx , - 1 - 2 I m W  ( r  

which can be written in more detail and with allowance for (3.5) and (3.6) in the form 

iQx(1 _- Q_~+(1.--Q~) 3/2 [ 2 = 1 
(3.12) 

I ~ / ( l + Q ~ ) ( 1 - 2 Q ~ )  I 1 - 2 I m ( Q I + R x ) '  

is satisfied. We first transform the left-hand side of (3.12). This side will not vary if one divides it by I1 - 

Q2113/2 = 1. Using the consequence of (3.8) to transform the numerator Q2 = Q 1 / ~ / 1 -  Q2, we find that 

the left-hand part is equal to I1 + Q212/[1 + Q~Ii l  - 2QI2J. Taking into account the equality 1 - 2Q 2 = (1 - 
Q2)/(1 + Q2) obtained from (3.8) and also (3.9) and (3.11), we conclude that 

1Q1(1 - Q21)+ ( 1 -  Q~)3/2 12 - 1 
(3.13) I I i -Q l 

Now we transform the right-hand part of (3.12). With allowance for the equalities (3.4) and (3.10), we have 
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the chain of equalities to t ransform the r ight-hand part of (3.12): 

1 1 

1 + i(Q1 + R1 - - R1)  

1 

1 + iQ1 - Q2 - iQxQ2 

1 + iQa - Q2 + i(Ra - R2) 

1 1 

(1 -- Q2)(1 + iQ1) I1 - Q212" 

Comparing with (3.13), we conclude that  the condition of pressure constancy is satisfied. 
In the vicinity of the point X = 99", the solution has the form 

( W  + X) - ( W  -F X)* = 31[32-516eiX[3(X - 99.)2/3. 

Hence, the fluid boundary  is broken with an internal angle of 120 ~ . The  even-bot tom condition is satisfied for 
99 < 99*. At the point X - 99", the bo t tom declines stepwise. With  increase in 99, the  even-bot tom condition is 
violated up to the point 99** = 99* + v ~ r .  In the vicinity of this point, the solution has the form 

(W + X) - (W + X)** = const ei4X/3(99 ** - X) 4/3 (const > 0). 

Hence, a break occurs again; however, for 99 > 99** the bo t tom is again even and horizontal. This solution 
can be interpreted as a flow above the uneven site of the bo t tom positioned for 99* < 99 < 99**. The "obstacle 
length" at the bo t tom is given by the formula 

x'" - x" = 4h0 {21n(1 + 

Integrating the consequence of (3.5) d (R1 + x ) / d u  = lx/'FZ~-u/2u, we arrive at the following statement .  
If u(X) is the conformal mapping  of a polygon in the plane of the complex potential  X (Fig. 1) at the upper 
half-plane u, the Wit t ing solution for 0 = r / 4  is given by the formula 

1 1 - - ~ 1  - u  
+ const .  

1 + x / 1  

Subst i tut ing (3.7) into it, we obtain the parametric representation of the free-surface equation 

4 (  z l l n l - s i n ~ l ; :  ) X = x/~ cos ~ cos ~ + + sin c~ + const, sin 
( o ;) 

g = 4zr x/2 cos a sin g - cos a + (-7r /2  ~< c~ ~< 7r/2). 

The free-surface shape, which is determined by this formula, and the streamlines are shown in Fig. 2. 
The two-valence flow above the uneven bo t tom with a point of self-intersection is found. At the lower point, 
the fluid is below the rigid wall. The separation of the fluid does not occur because of the negative pressure 
inside the fluid. 

43 



Y/ho 

0 
0 4 

o, = ~q.,, / 

-4  0 4 

Fig. 4 

-, 0 X / h  o 4 

A flow that  is not similar to a solitary wave was obtained. However, this did not stop Wit t ing from 
constructing a solitary wave for 9 = 7r/4 on the basis of this flow, which was found by h im numerically. 
He linearized problem (1.2) using this solution; the per turbed  solution was selected so that  the  symmetry  
condition relative to the vertical axis was satisfied. As a result, a wave profile close to the  results obtained by 
other authors was found. Now the exact solution can be linearized similarly. 

4. N u m e r i c a l  I n t e g r a t i o n  of  t h e  S y s t e m .  The  case which follows the case 0 = r / 4  in complexity 
is 0 = r / 5 .  Here system (1.7) includes five equations. We failed to integrate it exactly. If one denotes Y1 = 

/ ( dP i / dx + 1 )( dP i +1 / dx + 1 ) and introduces the independent  variable ( = iv J dx / r f2 f3 f4 fs, for 0 = r /5, 1 

one can write (1,7) in the following symmetrical  form: 

dyl dy2 dy3 
d~ = y3y5 - y2y4, d~ = y4yl - y3ys, d~ = ysy2 - yiyl ,  

dy4 dy5 (4.1) 
d~ = yly3 - ysy2, 'd~ = y2y4 - yly3. 

It is easy to show tha t  this system has the integrals 

(yl + y2 + y3 + y4 + ys) = 0, + + + + = 0; 

we note that  the second integral corresponds to (2.10). It is not known whether the system has other polynomial 
integrals. 

The  streamlines obtained by numerical integration of system (4.1) are shown in Fig. 3. The  upper 
streamline corresponds to the free surface. The  condition of pressure constancy is satisfied from - o o  to the 
singular point (the point of break in Fig. 3). 

System (1.7) was integrated numerically in the case where the number  of equations - c r  was more than 
five. We confined ourselves to odd n. In this case, there is a simple formula which allows us to write system 
(1.7) in the s tandard form resolved with respect to the derivatives: 

dPj (n-U/2 / ~  n 
dx + 1 =  1-I f[(2k+j-2) modn]+l 1-I fk (1 ~< j < n). (4.2) 

k= l  k = l  



In the case of even n, to derive the corresponding formula it is necessary to use the derivative of the integral 

. /2 ./2 

I I /2 j  = II f j-1, 
1=I 1=I 

and this formula is not simple. 
We set El = i. To sum the Witting series, one should solve the Cauchy problem ~i~ Pj/r = e 2i(j-1)~ 

(i ~ j ~ n) for system (4.2). This problem was solved by numerical integration in the plane ~. The fourth- 
order Runge-Kutta method was used. Since the point r = 0 is singular for (4.2), the integration was started 
at a different point ~" ~ 0. The solution at this point was previously found by numerical summation of the 
Witting series (1.5). 

Figure 4 shows the streamlines for six values of 0. The upper streamline corresponds to the free surface. 
If the streamlines are smooth everywhere for/9 = lr/3 and there is only one singular point (located at the 
flow boundary), the flow contains many singular points for 0 < r /3 .  Most of them are inside the fluid. The 
flow becomes multifold, i.e., the streamlines intersect. However, the singular points are located only in the 
right-hand part of the flow. The left-hand half is free from them and can be used to describe approximately 
solitary waves whose amplitude is smaller than the maximum amplitude. 

It is seen that as 0 varies, the flow varies chaotically on the right-hand side and little on the left-hand 
side. Apparently, the solution given by the Witting series (1.5) has a continuous dependence on the parameter 

on the left-hand side. 
The author thanks V. M. Teshukov, N. I. Makarenko, and S. L. Gavrilyuk for useful discussions. 
This work was performed within the framework of the integrated project of the Siberian Division of the 

Russian Academy of Sciences No. 43 "Investigation of Surface and Internal Gravitational Waves in a Liquid." 
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